SRI A S N M GOVERNMENT COLLEGE, PALAKOL, W.G. DT (Affiliated to Adikavi Nannaya University, Rajahmundry)

(Accredited with NAAC "B" Grade with 2.61 CGPA points)

CBCS/Semester System (W.e.f. 2020-21 Admitted Batch) I YEAR I SEMESTER SYLLABUS

DATA STRUCTURES USING C

COURSE CODE: BSCS22T

UNIT – I:

Introduction to Data Structures: Introduction to the Theory of Data Structures, Data Representation, Abstract Data Types, Data Types, Primitive Data Types, Data Structure and Structured Type, `Atomic Type, Difference between Abstract Data Types, Data Types, and Data Structures, Refinement Stages

Principles of Programming and Analysis of Algorithms: Software Engineering, Program Design, Algorithms, Different Approaches to Designing an Algorithm, Complexity, Big 'O' Notation, Algorithm Analysis, Structured Approach to Programming, Recursion, Tips and Techniques for Writing Programs in 'C'.

UNIT – II:

Arrays: Introduction to Linear and Non- Linear Data Structures, One- Dimensional Arrays, Array Operations, Two- Dimensional arrays, Multidimensional Arrays, Pointers and Arrays, an Overview of Pointers

Linked Lists: Introduction to Lists and Linked Lists, Dynamic Memory Allocation, Basic Linked List Operations, Doubly Linked List, Circular Linked List, Atomic Linked List, Linked List in Arrays, Linked List versus Arrays

UNIT – III:

Stacks: Introduction to Stacks, Stack as an Abstract Data Type, Representation of Stacks through Arrays, Representation of Stacks through Linked Lists, Applications of Stacks, Stacks and Recursion

Queues: Introduction, Queue as an Abstract data Type, Representation of Queues, Circular Queues, Double Ended Queues- Deques, Priority Queues, Application of Queues

UNIT – IV:

Binary Trees: Introduction to Non- Linear Data Structures, Introduction Binary Trees, Types of Trees, Basic Definition of Binary Trees, Properties of Binary Trees, Representation of Binary Trees, Operations on a Binary Search Tree, Binary Tree Traversal, Counting Number of Binary Trees, Applications of Binary Tree

UNIT - V:

Searching and sorting: Sorting – An Introduction, Bubble Sort, Insertion Sort, Merge Sort, and Searching

– An Introduction, Linear or Sequential Search, Binary Search, Indexed Sequential Search Graphs: Introduction to Graphs, Terms Associated with Graphs, Sequential Representation of Graphs, Linked Representation of Graphs, Traversal of Graphs, Spanning Trees, Shortest Path, Application of Graphs.

Additional Topic: Time Complexity and Space Complexity

TEXT BOOKS:

- 1. "Data Structures using C", ISRD group Second Edition, TMH
- 2. "Data Structures through C", Yashavant Kanetkar, BPB Publications

REFERENCES:

1. "Data Structures Using C" Balagurusamy E. TMH

SRI A S N M GOVERNMENT COLLEGE, PALAKOL, W.G. DT (Affiliated to Adikavi Nannaya University, Rajahmundry)

(Accredited with NAAC "B" Grade with 2.61 CGPA points)

CBCS/Semester System (W.e.f. 2020-21 Admitted Batch) I YEAR I SEMESTER

DATA STRUCTURES USING C LAB COURSE CODE: BSCS22P

Time: 2 Hours

Max.Marks:50

List of Programs:

- 1. Write a program to read 'N' numbers of elements into an array and also perform the following operation on an array
 - a. Add an element at the begging of an array
 - b. Insert an element at given index of array
 - c. Update a element using a values and index
 - d. Delete an existing element
- 2. Write a program using stacks to convert a given
 - a. postfix expression to prefix
 - b. prefix expression to postfix
 - c. infix expression to postfix
- 3. Write Programs to implement the Stack operations using an array
- 4. Write Programs to implement the Stack operations using Liked List.
- 5. Write Programs to implement the Queue operations using an array.
- 6. Write Programs to implement the Queue operations using Liked List.
- 7. Write a program for arithmetic expression evaluation.
- 8. Write a program for Binary Search Tree Traversals
- 9. Write a program to implement dequeue using a doubly linked list.
- 10. Write a program to search an item in a given list using the following Searching Algorithms
 - a. Linear Search
 - b. Binary Search.
- 11. Write a program for implementation of the following Sorting Algorithms
 - a. Bubble Sort
 - b. Insertion Sort
 - c. Quick Sort
- 12. Write a program for polynomial addition using single linked list
- 13. Write a program to find out shortest path between given Source Node and Destination. Node in a given graph using Dijkstrar's algorithm.
- 14. Write a program to implement Depth First Search graph traversals algorithm.
- 15. Write a program to implement Breadth First Search graph traversals algorithm

Lab Evaluation Procedure

1. Record:	10 Marks
2. Procedure cum Execution:	30 Marks
3. Viva:	10 Marks

Total

50 Marks

SRI A S N M GOVERNMENT COLLEGE, PALAKOL, W.G. DT (Affiliated to Adikavi Nannaya University, Rajahmundry)

(Accredited with NAAC "B" Grade with 2.61 CGPA points)

CBCS/Semester System (W.e.f. 2020-21 Admitted Batch) I YEAR I SEMESTER MODEL PAPER

DATA STRUCTURE USING C

Time: 3Hours

Section-A

I. Answer any FIVE questions

- 1. Explain Abstract Data Types.
- 2. Define Linear and Non- Linear Data Structures.
- 3. Define Stack. What are applications of Stacks?
- 4. Explain about Binary Search Tree?
- 5. Write a C Program for Sequential Search.
- 6. What is Big 'O' Notation? Explain.
- 7. Explain binary search procedure to find key element from sorted array with an example?
- 8. Briefly explain various representations of Graphics.

II. Answer any FIVE questions

9. (a) What are the difference between Abstract Data Types and Data Structures?

(**OR**)

- (b) What are the different Approaches to Designing an Algorithm?
- 10. (a) Define Array. How to declare two dimensional array. Write a program for addition of two matrices using arrays.

(**OR**)

- (b) What is linked list? Explain different types of linked lists in data structures.
- 11. (a) What is stack? Write ADT. Explain various operations of stack.

(**OR**)

- (b) What is a Deque? What are the different techniques used to represent Deque? Explain
- 12. (a) What are the Operations of a Binary Search Tree? Explain.

(**OR**)

- (b) Explain various Binary Tree Traversal techniques.
- 13.(a) Explain procedure for merge sort. Derive its time complexity

(**OR**)

(b)Define graph traversal. Explain DFS concept with an example.

Section-B

(5x10=50)

(5x5=25)

Maximum Marks: 75